
 

 

第 1 章 

◄ MADlib 基础 ► 

 

 

MADlib 是一个基于 SQL 的数据库内置的开源机器学习库，具有良好的并行度和可扩展

性，有高度的预测精准度。MADlib 最初由 Pivotal 公司与伯克利大学合作开发，提供了多种

数据转换、数据探索、概率统计、数据挖掘和机器学习方法，使用它能够简易地对结构化数

据进行分析和学习，以满足各行各业的应用需求。用户可以非常方便地将 MADlib 加载到数

据库中，从而扩展数据库的分析功能。2015 年 7 月 MADlib 成为 Apache 软件基金会的孵化

器项目，经过两年的发展，于 2017 年 8 月毕业成为 Apache 顶级项目。MADlib 1.14 可以与

PostgreSQL、Greenplum和 HAWQ等数据库系统无缝集成。 

本章首先介绍 MADlib 的一些基本概念及其有别于其他机器学习工具包的特点。为了更

好地使用 MADlib，我们将简要说明它的设计思想、工作原理、执行流程和基础架构，还将

罗列MADlib支持的模型和主要功能模块，最后说明MADlib软件包的安装与卸载。 

1.1  基本概念 

1.1.1  MADlib是什么 

无论是经典的 SAS、SPSS 还是时下流行的 MATLAB、R、Python，所有这些机器学习

或数据挖掘软件都是自成系统的，具体来说就是具有一套完整的程序语言及其集成开发环境，

提供了丰富的数学和统计分析函数，具备良好的人机交互界面，支持从数据准备、数据探索、

数据预处理到开发和实现模型算法、数据可视化，再到最终结果的验证与模型部署及应用的

全过程。它们都是面向程序员的系统或语言，重点在于由程序员自己利用系统提供的基本计

算方法或函数，通过编程的方式实现应用需求。 

MADlib 具有与上述工具完全不同的设计理念，不是面向程序员，而是面向数据库开发

人员或 DBA。如果要用一句话说明什么是 MADlib，那就是“SQL 中的大数据机器学习库”。

通常 SQL 查询能发现数据最明显的模式和趋势，但要想获取数据中最为有用的信息，需要的

其实是完全不同的一套技术，一套牢固扎根于数学和应用数学的技能（机器学习），而具备

这种技术的人才似乎只存在于学术界中。如果能将 SQL 的简单易用与数据挖掘的复杂算法结

合起来，充分利用两者的优势和特点，对于广大传统数据库应用技术人员来说，就可将他们

长期积累的数据库操作技能复用到机器学习领域，使转型更加轻松。现在，鱼和熊掌兼得的

机会来了，DBA只要使用MADlib，就能用 SQL查询实现简单的机器学习。 



 

2 

SQL机器学习库 MADlib技术解析 

对用户而言，MADlib 提供了可在 SQL 查询语句中调用的函数，即可以用 select + 

function name 的方式来调用这个库。这就意味着，所有的数据调用和计算都在数据库内完成

而不需要数据的导入导出。MADlib 不仅包括基本的线性代数运算和统计函数，还提供了常

用的、现成的机器学习模型函数。用户不需要深入了解算法的程序实现细节，只要搞清楚各

函数中相关参数的含义、提供正确的入参并能够理解和解释函数的输出结果即可。这种使用

方式无疑会极大地提高开发效率，节约开发成本。在 MADlib 的世界里，一切皆函数，就是

这么简单。 

然而，任何事物都具有两面性，虽然 MADlib 提供了使用方便性、降低了学习和使用门

槛，但是相对于其他机器学习系统而言，其灵活性与功能完备性显然是短板。首先，模型已

经被封装在 SQL 函数中，性能优劣完全依赖于函数本身，基本没有留给用户进行性能调整的

空间。其次，函数只能在 SQL中调用，而 SQL依赖于数据库系统。也就是说单独的MADlib

函数库是毫无意义的，必须与 PostgreSQL、Greenplum和 HAWQ等数据库系统结合使用。最

后，既然 MADlib 是 SQL 中的机器学习库，就注定它不关心数据可视化，本身不带数据的图

形化表示功能。由此可见，MADlib 作为工具，并不是传统意义上的机器学习系统软件，而

只是一套可在 SQL 中调用的函数库，其出发点是让数据库技术人员用 SQL 快速完成简单的

机器学习工作，比较适合做一些简单的、特征相对明显的机器学习。 

即便如此，MADlib 的易用性已经足以引起我们的兴趣。在了解了 MADlib 是什么及其

优缺点后，用户就能根据自己的实际情况和需求有针对性地选择和使用 MADlib 来实现特定

业务目标。 

1.1.2  MADlib的设计思想 

驱动MADlib架构的关键设计思想体现在以下方面： 

� 操作数据库内的本地数据，避免在多个运行时环境之间不必要地移动数据。 

� 充分利用数据库引擎功能，但将机器学习逻辑从数据库特定的实现细节中分离出来。 

� 利用MPP无共享技术提供的并行性和可扩展性，如 Greenplum或 HAWQ数据库系统。 

� 开放实施，保持与 Apache社区的积极联系和持续的学术研究。 

操作本地数据的思想与 Hadoop是一致的。为了使全局的带宽消耗和 I/O延迟降到尽可能

小，在选择数据时，MADlib 总是选择距离读请求最近的存储节点。如果在读请求所在节点

的同一个主机上有需要的数据副本，那么 MADlib 会尽量选择它来满足读请求。如果数据库

集群跨越多个数据中心，那么存储在本地数据中心的副本会优先于远程副本被选择。 

MADlib 库表现为数据库内置的函数。当函数在 SQL 语句中执行时，可以充分利用数据

库引擎提供的功能。例如，在 HAWQ中执行MADlib函数时，每个物理 Segment在执行查询

的时候会启动多个查询执行器（Query Executor，QE），使得单一物理 Segment 看起来就像

多个虚拟 Segment，从而使 HAWQ 能够更好地利用所有可用资源。虚拟 Segment 是内存、

CPU 等资源的容器，每个虚拟 Segment 都含有为查询启动的一个 QE。查询就是在虚拟

Segment中被 QE所执行的。 



 

3 

第 1章  MADlib基础

MADlib利用 Greenplum或 HAWQ数据库系统使用的MPP（Massively Parallel Processing，

大规模并行处理）架构，使用户能够获益于经过锤炼的基于 MPP 的分析功能及其查询性能，

兼顾了低延时与高扩展。 

MADlib 现已成为 Apache 顶级项目，其整个项目和代码是在 Apache 上开源的，开发是

在 Pivotal的支持下基于 Apache 社区的，与社区有很好的互动。 

1.1.3  MADlib的工作原理 

现以 HAWQ 上的 MADlib 为例解释它的工作原理。图 1-1 是 HAWQ 的架构。当一个客

户端查询向 HAWQ 发出请求时，Master 节点会对查询进行处理，根据查询成本、资源队列

定义、数据局部化和当前系统中的资源使用情况，为查询规划资源分配。之后查询被分发到

Segment 节点所在的物理主机并行处理，可能是节点子集或整个集群。每个 Segment 节点上

的资源实施器监控着查询对资源的实时使用情况，避免异常资源占用。查询处理完成后，最

后的结果再通过Master返回客户端。 

 

图 1-1  HAWQ架构 



 

4 

SQL机器学习库 MADlib技术解析 

MADlib 就是构建在 HAWQ 架构之上的，通过定义 HAWQ 上的 UDA 和 UDF 建立 In-

Database Functions。当我们使用 SQL 调用 MADlib 时，MADlib 会首先进行输入的有效性判

断和数据的预处理，将处理后的查询传给 HAWQ，之后所有的计算即等同于普通的查询处理

请求在 HAWQ内执行。图 1-2显示了MADlib在 HAWQ上的工作原理。 

 

图 1-2  MADlib在 HAWQ上的工作原理 

1.1.4  MADlib的执行流程 

图 1-3 中是整个 MADlib 函数调用过程的执行流程。在客户端，我们可以使用 Jupyter、

Zeppelin、psql 等工具连接数据库并调用 MADlib Function。MADlib 预处理后根据具体算法

生成多个查询传入数据库服务器，之后数据库服务器执行查询并返回 String（一般是一个或

多个存放结果的表）。 



1.

MA

匹

询

由

.1.5

M

处

AD

匹配。

请求

四个

驱

5  

MAD

处于

lib

。最

求。

个主

（1

驱动

M

Dlib

于架构

提供

最底层

中间

主要组

）Py

动函数

MAD

b架

构最

供的

层则

间四

组件

ytho

数是

Dlib

构如

最上

的函数

则是

四层是

件构成

on调

是用户

b架

如图

面一

数来

Gr

是构

成：

调用

户输

架构

图 1-4

一层

来完成

reen

构成

 

SQ

输入

构 

4所

层的是

成机

nplum

成 MA

QL模

入的主

所示。

是用

机器

m、

ADl

模板

主入

。 

用户

学习

Pos

lib的

板实现

入口点

图 1

图

接口

习工

stgre

的组

现的

点，

1-3 

图 1-

口。

工作。

eSQ

组件

的驱动

调用

 MA

4  M

如前

。当

QL、

。从

动函

用优

ADli

MAD

前所

当然这

HA

从图

函数

优化

 

ib执

Dlib

所述

这里

AWQ

1-4

数 

化器执

执行流

架构

，用

里的

Q 等

4中

执行

流程

构 

用户

SQ

等数

可以

行迭代

户只需

QL 语

数据库

以看

代算

需通

语法

库管

看到，

算法

通过

法要

管理

，M

的外

第

在

与特

系统

MAD

外层

第 1

SQL

特定

统，

Dlib

层循环

1章

L 查

定数据

最终

系统

环。

  M

查询

据库

终由

统架

 

MAD

询语句

库管理

由它们

架构

Dlib

句中

理系

们处

自上

基础

 

 

中调

系统

处理

上而

5 

础

用

相

理查

下



 

6 

SQL机器学习库 MADlib技术解析 

（2）Python实现的高级抽象层 

高级抽象层负责算法的流程控制。与驱动函数一起实现输入参数验证、SQL 语句执行、

结果评估，并可能在循环中自动执行更多的 SQL语句直至达到某些收敛标准。 

（3）C++实现的核心函数 

这部分函数是由 C++编写的核心函数，在内层循环中实现特定机器学习算法。出于性能

考虑，这些函数使用 C++而不是 Python编写。 

（4）C++实现的低级数据库抽象层 

这些函数提供一个编程接口，对所有的 PostgreSQL 数据库内核实现细节进行抽象。它们

提供了一种机制，使得 MADlib 能够支持不同的后端平台，从而使用户将关注点集中在内部

功能而不是平台集成上。 

1.2  MADlib 的功能 

1.2.1  MADlib支持的模型类型 

MADlib 支持以下常用机器学习模型类型，其中大部分模型都包含训练和预测两组函数。 

（1）回归 

如果所需的输出具有连续性，我们通常使用回归方法建立模型，预测输出值。例如，如

果有真实的描述房地产属性的数据，我们就可以建立一个模型，预测基于房屋已知特征的售

价。因为输出反应了连续的数值而不是分类，所以该场景是一个回归问题。 

（2）分类 

如果所需的输出实质上是分类的，就可以使用分类方法建立模型，预测新数据会属于哪

一类。分类的目标是能够将输入记录标记为正确的类别。例如，假设有描述人口统计的数据，

以及个人申请贷款和贷款违约历史数据，那么我们就能建立一个模型，描述新的人口统计数

据集合贷款违约的可能性。此场景下输出的分类为“违约”和“正常”两类。 

（3）关联规则 

关联规则有时又叫作购物篮分析或频繁项集挖掘。相对于随机发生，确定哪些事项更经

常一起发生，指出事项之间的潜在关系。例如，在一个网店应用中，关联规则挖掘可用于确

定哪些商品倾向于被一起售出，然后将这些商品输入到客户推荐引擎中，提供促销机会，就

像著名的啤酒与尿布的故事。 

（4）聚类 

识别数据分组，一组中的数据项比其他组的数据项更相似。例如，在客户细分分析中，

目标是识别客户行为相似特征组，以便针对不同特征的客户设计各种营销活动，以达到市场

目的。如果提前了解客户细分情况，这将是一个受控的分类任务。当我们让数据识别自身分

组时，这就是一个聚类任务。 



具

分

例

些

问

数

常

1.

主

具有相

描

分析人

如，

些变量

不

题，

数据分

常被用

.2.2

M

下

�

（5

主题

相同

（6

描述

人员

计

量是

（7

不了

并

分析

用于

2  

MAD

下面

（1）

� A

�

�

）主

题建模

同主题

）描

述性统

员提供

计算数

是连续

）模

了解一

并用测

析，验

于模型

M

Dlib

面基于

）D

Arra

� A

� M

主题建

模与

题的

描述性

统计

供信

数据

续性

模型验

一个

测试

验证

型验

MAD

b的

于M

ata 

aysan

Array

Matr

建模

与聚

的文档

性统

计不

信息

据集

性变量

验证

个模

试数

证统

验证

Dlib

主要

MAD

Typ

nd M

yOp

rixO

模 

类相

档。

统计

提供

以了

中每

量以

证 

型的

据评

计模

。

b的

要功

Dlib

pes a

Matr

perat

Opera

相似

注

 

供模

了解

每个

以及

的准

评估

模型

的主

功能模

b 1.1

and

rices

tion

ation

似，也

注意，

模型，

解基础

个变量

及值的

准确性

估模型

型的有

主要

模块

10版

Tra

s（数

s（数

ns（

也是

M

，因

础数

量内

的分

性就

型的

有效

要功

块如

版本

ansfo

数组

数组

矩阵

是确

MAD

因此

数据

内的

分布情

就开始

的精

效性

功能

图 1

图

本预览

orm

组与矩

组运算

阵运

定彼

Dlib

不被

，为

数据

情况

始使

度尤

，评

能模

1-5所

图 1-5

览M

matio

矩阵

算）

运算

彼此

的当

被认

为数

据分

况。描

使用

尤为

评估

模块

所示

5  M

MAD

ons

阵）

 

）

此相似

当前

认为是

数据提

分布有

描述

用它，

为重要

估模型

块 

示。

MAD

Dlib

（数

似的

前实现

是一

提供

有助

述性

，很

要。

型不

Dlib主

b提供

数据类

 

的数据

现并

一种机

供有价

助于分

性统计

很容

需要

不过分

主要

供的

类型

据组

并不支

机器

价值

分析

计通

易导

要将

分拟

要功能

的具

型与转

组。

支持

器学

值的

析理

通常是

导致

将训

拟合

能模块

体模

转换

这里

持中

学习方

的解释

理解哪

是数

致糟糕

练数

训练

块

模型

换）

里的

文分

方法

释，

哪些

数据探

糕的

数据

练数

型算法

的相似

分词

法，但

可能

些变量

探索

的结果

据和测

数据。

法或

第

似通

词。

但是

能会

量应

索的

果，

测试

。N

或功能

第 1

通常

是描

会影

应被

的组成

所

试数

N-fol

能。

1章

特指

述性

响数

视为

成部

以理

据分

ld 交

 

  M

指在

性统

数据

为分

部分。

理解

分离

交叉

MAD

在文本

统计有

据模型

分类变

。 

解模型

离，频

叉验证

Dlib

本领

有助

型的

变量

型存

频繁

证方

基础

领域

助于

的选

量、

存在

繁进

方法

7 

础

中

向

择。

哪

的

行

经

 



 

8 

SQL机器学习库 MADlib技术解析 

� MatrixFactorization（矩阵分解） 

� Low-rankMatrix Factorization（低阶矩阵分解） 

� SingularValue Decomposition（SVD，奇异值分解） 

� Normsand Distance functions（范数和距离函数） 

� SparseVectors（稀疏向量） 

� DimensionalityReduction（降维） 

� PrincipalComponent Analysis（PCA主成分分析） 

� PrincipalComponent Projection（PCP主成分投影） 

� Pivot（透视表） 

� EncodingCategorical Variables（分类变量编码） 

� Stemming（词干提取） 

（2）Graph（图） 

� SingleSource Shortest Path（单源最短路径） 

（3）Model Evaluation（模型评估） 

� CrossValidation（交叉验证） 

� PredictionMetrics（指标预测） 

（4）Statistics（统计） 

� DescriptiveStatistics（描述性统计） 

� Pearson’s Correlation（皮尔森相关系数） 

� Summary（摘要汇总） 

� InferentialStatistics（推断性统计） 

� HypothesisTests（假设检验） 

� ProbabilityFunctions（概率函数） 

（5）Supervised Learning（监督学习） 

� ConditionalRandom Field（条件随机场） 

� RegressionModels（回归模型） 

� ClusteredVariance（聚类方差） 

� Cox-ProportionalHazards Regression（Cox比率风险回归） 

� ElasticNet Regularization（弹性网络回归） 

� GeneralizedLinear Models（广义线性回归） 

� LinearRegression（线性回归） 

� LogisticRegression（逻辑回归） 

� MarginalEffects（边际效应） 

� MultinomialRegression（多分类逻辑回归） 

� OrdinalRegression（有序回归） 

� RobustVariance（鲁棒方差） 



 

9 

第 1章  MADlib基础

� SupportVector Machines（支持向量机） 

� TreeMethods（树方法） 

� DecisionTree（决策树） 

� RandomForest（随机森林） 

（6）Time Series Analysis（时间序列分析） 

� ARIMA（自回归积分滑动平均） 

（7）UnsupervisedLearning（无监督学习） 

� AssociationRules（关联规则） 

� AprioriAlgorithm（Apriori算法） 

� Clustering（聚类） 

� k-MeansClustering（k-Means） 

� TopicModelling（主题模型） 

� LatentDirichlet Allocation（LDA） 

（8）Utility Functions（应用函数） 

� DeveloperDatabase Functions（开发者数据库函数） 

� LinearSolvers（线性求解器） 

� DenseLinear Systems（稠密线性系统） 

� SparseLinear Systems（稀疏线性系统） 

� PathFunctions（路径函数） 

� PMMLExport（PMML导出） 

� Sessionize（会话化） 

� TextAnalysis（文本分析） 

� TermFrequency（词频） 

1.3  MADlib 的安装与卸载 

1.3.1  确定安装平台 

MADlib 1.14可以安装在 PostgreSQL、Greenplum和 HAWQ中。在不同的数据库系统，

安装过程不尽相同。这里以在 HAWQ 2.1.1.0中安装MADlib为例，演示MADlib的安装与卸

载过程。后面章节进行的一系列示例也都在此实验环境中进行的。HAWQ 的安装部署过程  

从略。 

机器学习需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能并行计算

的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据，并且当数

据不能集中到一起处理时更是至关重要。 



 

10 

SQL机器学习库 MADlib技术解析 

比照以上机器学习对数据库系统提出的要求，我们不妨简单考量一下 HAWQ。先提出一

点，HAWQ 目前不支持索引。对于存储在 Hadoop 集群上的“大数据”分析应用而言，实际

执行的操作几乎都是表扫描，很少需要定位几行数据，因此传统的由用户定义的索引用在此

场景下的作用非常有限。HAWQ 使用的随机分布存储策略具有较好的数据本地化特性，优化

器在制定查询计划时，内部实现已然利用了索引的思想。HAWQ使用专为 HDFS量身打造的

基于成本的查询优化框架来增强其性能，所采用的 MPP 架构使用户能够获益于优异的查询

性能，同时有效利用 HDFS 的分布式存储、容错机制、机架感知等功能，兼顾了低延时与高

扩展。由此看来，在 HAWQ上运行MADlib是实现大数据机器学习比较合理的选择。 

1.3.2  下载 MADlib二进制压缩包 

下载地址为 https://network.pivotal.io/products/pivotal-hdb。2.1.1.0 版本的 HAWQ 提供了

四个MADlib安装文件，如图 1-6所示。经过测试，本环境只有MADlib 1.10.0 版本的文件可

以正常安装。 

 

图 1-6  下载MADlib安装文件 

1.3.3  安装 MADlib 

以下命令需要使用 gpadmin用户、在 HAWQ的Master主机上执行。 

（1）解压缩 

tar -zxvfmadlib-ossv1.10.0_pv1.9.7_hawq2.1-rhel5-x86_64.tar.gz   

（2）安装MADlib的 gppkg文件 

gppkg -imadlib-ossv1.10.0_pv1.9.7_hawq2.1-rhel5-x86_64.gppkg   



 

11 

第 1章  MADlib基础

该命令在 HAWQ集群的所有节点（Master和 Segment）上创建 MADlib的安装目录和文

件，默认目录为/usr/local/hawq_2_1_1_0/madlib。gppkg 是 Greenplum 的包管理器应用程序，

用于在集群所有节点上安装 Greenplum数据库扩展包及其依赖。 

（3）在指定数据库中部署MADlib 

$GPHOME/madlib/bin/madpack install -c /dm -s madlib -p hawq   

该命令在 HAWQ的 dm数据库中建立 madlib schema，-p参数指定平台为 HAWQ。命令

执行后可以查看在 madlib schema中创建的数据库对象。 

dm=# set search_path=madlib;       

SET       

dm=# \dt       

                     List of relations       

 Schema |       Name       | Type  |  Owner  |   Storage          

--------+------------------+-------+---------+-------------       

 madlib | migrationhistory | table | gpadmin | append only       

(1 row)       

       

dm=# \ds       

                        List of relations       

 Schema |          Name           |   Type   |  Owner  | Storage        

--------+-------------------------+----------+---------+---------       

 madlib | migrationhistory_id_seq | sequence | gpadmin | heap       

(1 row)       

       

dm=# select type,count(*)        

dm-#   from (select p.proname as name,       

dm(#                case when p.proisagg then 'agg'       

dm(#                     when p.prorettype      

dm(#                          = 'pg_catalog.trigger'::pg_catalog.regtype      

dm(#                     then 'trigger'     

dm(#                     else 'normal'       

dm(#                 end as type       

dm(#            from pg_catalog.pg_proc p, pg_catalog.pg_namespace n        

dm(#           where n.oid = p.pronamespace and n.nspname='madlib') t        

dm-#  group by rollup (type);       

  type  | count        

--------+-------       

 agg    |   135       

 normal |  1324       



 

12 

SQL机器学习库 MADlib技术解析 

        |  1459       

(3 rows)  

从查询结果可以看到，MADlib 部署应用程序 madpack 首先创建数据库模式 madlib，然

后在该模式中创建数据库对象，包括一个表、一个序列、1324 个普通函数、135 个聚合函数。

所有机器学习的模型、算法、操作和功能都是通过调用这些函数实际执行的。 

（4）验证安装 

$GPHOME/madlib/bin/madpack install-check -c /dm -s madlib -p hawq   

该命令通过执行 29 个模块的 77 个案例验证所有模块都能正常工作。命令输出如下，如

果看到所有案例都已经正常执行，就说明MADlib安装成功。这条命令需要执行较长时间。 

[gpadmin@hdp3 Madlib]$ $GPHOME/madlib/bin/madpack install-check -c /dm -s 

madlib -p hawq       

madpack.py : INFO : Detected HAWQ version 2.1.       

TEST CASE RESULT|Module: array_ops|array_ops.sql_in|PASS|Time: 1851 

milliseconds       

TEST CASE RESULT|Module: bayes|gaussian_naive_bayes.sql_in|PASS|Time: 24222 

milliseconds       

TEST CASE RESULT|Module: bayes|bayes.sql_in|PASS|Time: 70634 milliseconds       

     

…     

     

TEST CASE RESULT|Module: pca|pca.sql_in|PASS|Time: 523230 milliseconds       

TEST CASE RESULT|Module: validation|cross_validation.sql_in|PASS|Time: 33685 

milliseconds       

[gpadmin@hdp3 Madlib]$    

1.3.4  卸载 MADlib 

卸载过程基本上是安装的逆过程。 

（1）删除 madlib模式 

方法 1，使用 madpack部署应用程序删除模式。 

$GPHOME/madlib/bin/madpack uninstall -c /dm-s madlib -p hawq   

方法 2，使用 SQL 命令手工删除模式。 

drop schema madlib cascade;   

（2）删除其他遗留数据库对象 

① 删除模式。如果模型验证过程中途出错，那么数据库中可能包含测试的模式（模式名

称前缀都是 madlib_installcheck_），只能手工执行 SQL 命令删除，例如： 



 

13 

第 1章  MADlib基础

drop schema madlib_installcheck_kmeanscascade;    

② 删除用户。如果存在遗留的测试用户，就将其删除，例如： 

drop user if existsmadlib_1100_installcheck;   

（3）删除MADlib rpm包 

查询包名： 

gppkg -q --all   

输出如下： 

[gpadmin@hdp3 Madlib]$ gppkg -q --all       

20170630:16:19:53:076493 gppkg:hdp3:gpadmin-[INFO]:-Starting gppkg with args: 

-q --all       

madlib-ossv1.10.0_pv1.9.7_hawq2.1     

删除 rpm包： 

gppkg -rmadlib-ossv1.10.0_pv1.9.7_hawq2.1     

1.4  小结 

不同于其他机器学习工具，MADlib 是一个基于 SQL 的数据库内置的可扩展机器学习库。

其语法是基于 SQL的，也就是说，可以用 select + function name的方式来调用这个库。这意

味着 MADlib 需要在数据库系统中使用，所有的数据调用和计算都在数据库内完成而不需要

数据的导入导出。MADlib 是一个运行在大规模并行处理数据库系统上的应用，因此可扩展

性非常好，能够处理较大量级的数据，目前支持 PostgreSQL、Greenplum 和 HAWQ。

MADlib 具有强大的数据分析能力，支持大量的机器学习、数据分析和统计算法。MADlib 项

目和代码在 Apache社区开源，现已成为 Apache软件基金会的顶级项目。 

 



 

 

第 2 章 

◄ 数据类型 ► 

 

 

通常机器学习操作的数据集可以看作数据对象的集合。数据对象有时也叫作记录、点、

向量、模式、事件、案例、样本、观测或实体。数据对象用一组刻画对象基本特征的属性描

述，如物体质量、事件发生的时间等。属性有时也叫作变量、字段、特征或维。在数学上，

向量和矩阵可以用来表示数据对象及其属性。 

和其他机器学习语言或工具一样，MADlib 操作的基本对象也是向量与矩阵。在 MADlib

中，对向量和矩阵的操作是通过一系列函数完成的。 

本章将介绍 MADlib 中向量和矩阵的概念，并举出一些简单的函数调用示例。用户可以

使用 psql 的联机帮助查看函数的参数、返回值和函数体等信息，例如\df madlib.array_add 或

\df+ madlib.array_add。这里侧重于应用，因为理解这些函数的意义和用法是使用 MADlib 进

行机器学习的基础。 

2.1  向量 

数学中的向量（vector，也称为欧几里得向量、几何向量、矢量）是一个具有大小

（magnitude）和方向（direction）的值，可以形象化地表示为带箭头的线段。箭头所指代表

向量的方向，线段长度代表向量的大小。图 2-1（a）给出了两个向量：向量 u 长度为 1、平

行于 y 轴，向量 v长度为 2、与 x 轴夹角为 45º。图 2-1（b）和图 2-1（c）分别以有向线段表

示两个向量的差与和。 

                       

        （a）两个向量                  （b）两个向量的差                 （c）两个向量的和 

图 2-1  两个向量以及它们的和与差 

u 

v 

u v u 

v 

u-v

u+v 



 

15 

第 2章  数据类型

2.1.1  MADlib中的向量操作函数 

在MADlib中，一维数组与向量具有相同的含义。MADlib的数组运算模块（array_ops）

提供了一组用 C 实现的基本数组操作，是机器学习算法的支持模块。数组运算函数支持以下

数字类型： 

� SMALLINT 

� INTEGER 

� BIGINT 

� REAL 

� DOUBLE PRECISION（FLOAT8） 

� NUMERIC（内部被转化为 FLOAT8，可能丢失精度） 

数组运算函数列表及功能描述如表 2-1所示。 

表 2-1  MADlib数组运算函数 

函数名称 描述 

array_add() 两个数组相加，需要所有值非空，返回与输入相同的数据类型 

sum() 数组元素求和，需要所有值非空，返回与输入相同的数据类型 

array_sub() 两个数组相减，需要所有值非空，返回与输入相同的数据类型 

array_mult() 两个数组相乘，需要所有值非空，返回与输入相同的数据类型 

array_div() 两个数组相除，需要所有值非空，返回与输入相同的数据类型 

array_dot() 两个数组点积，需要所有值非空，返回与输入相同的数据类型 

array_contains() 检查一个数组是否包含另一个数组。如果右边数组中的每个非零元素都等于左边数

组中相同下标的元素，就返回 TRUE 

array_max() 返回数组中的最大值，忽略空值，返回与输入相同的数据类型 

array_max_index() 返回数组中的最大值及其对应的下标，忽略空值，返回类型的格式为[max, index]，

其元素类型与输入类型相同 

array_min() 返回数组中的最小值，忽略空值，返回与输入相同的数据类型 

array_min_index() 返回数组中的最小值及其对应的下标，忽略空值，返回类型的格式为[min, index]，

其元素类型与输入类型相同 

array_sum() 返回数组中值的和，忽略空值，返回与输入相同的数据类型 

array_sum_big() 返回数组中值的和，忽略空值，返回 FLOAT8 类型。该函数的作用是当汇总值可能

超出元素类型范围时替换 array_sum() 

array_abs_sum() 返回数组中绝对值的和，忽略空值，返回与输入相同的数据类型 

array_abs() 返回由数组元素的绝对值组成的新数组，需要所有值非空 

array_mean() 返回数组的均值，忽略空值 

array_stddev() 返回数组的标准差，忽略空值 

array_of_float() 该函数创建元素个数为参数值的 FLOAT8数组，初始值为 0.0 

array_of_bigint() 该函数创建元素个数为参数值的 BIGINT数组，初始值为 0 



 

16 

SQL机器学习库 MADlib技术解析 

（续表） 

函数名称 描述 

array_fill() 该函数将数组每个元素设置为参数值 

array_filter() 该函数过滤掉数组中等于指定值的元素，要求是一维数组并且所有值非空，返回与

输入相同的数据类型，默认移除所有 0值 

array_scalar_mult() 该函数将一个数组作为输入，元素与第二个参数指定的标量值相乘，返回结果数

组。需要所有值非空，返回与输入相同的数据类型 

array_scalar_add() 该函数将一个数组作为输入，元素与第二个参数指定的标量值相加，返回结果数

组。需要所有值非空，返回与输入相同的数据类型 

array_sqrt() 返回由数组元素的平方根组成的数组，需要所有值非空 

array_pow() 该函数以数组和一个 FLOAT8 为输入，返回由每个元素的乘幂（由第二个参数指

定）组成的数组，需要所有值非空 

array_square() 返回由数组元素的平方组成的数组，需要所有值非空 

normalize() 该函数规范化一个数组，使元素平方和为 1，要求是一维数组并且所有值非空 

下面用具体的例子说明函数的含义及用法。 

（1）建立具有两个整型数组列 array1和 array2的数据库表并添加数据。 

drop table if exists array_tbl;   

create table array_tbl     

( id integer, array1 integer[], array2 integer[] );    

   

insert into array_tbl values    

( 1, '{1,2,3,4,5,6,7,8,9}','{9,8,7,6,5,4,3,2,1}' ),    

( 2, '{1,1,0,0,1,2,3,99,8}','{0,0,0,-5,4,1,1,7,6}');    

（2）查询 array1列的最小值及下标、最大值及下标、平均值和标准差。 

select id, madlib.array_min(array1)min,     

           madlib.array_max(array1) max,    

           madlib.array_min_index(array1) min_idx,     

           madlib.array_max_index(array1) max_idx,    

           madlib.array_mean(array1) mean,     

           madlib.array_stddev(array1) stddev    

from array_tbl;    

结果： 

id | min | max | min_idx | max_idx |       mean       |      stddev         

----+-----+-----+---------+---------+------------------+------------------   

  1 |   1 |   9 | {1,1}   | {9,9}   |                5 | 2.73861278752583   

  2 |   0 |  99 | {0,3}   | {99,8}  | 12.7777777777778 | 32.4259840936932   

(2 rows)   



 

17 

第 2章  数据类型

说明： 

� MADlib的数组下标从 1开始。 

� 标准差的计算公式为σ = � �

���
∑ (�� − �)��

��� 。其中，μ表示数组元素平均值。 

可以执行下面的查询验证标准差，结果同样是 32.4259840936932。 

select sqrt(sum(power(a-avg_a,2))/(count(*)-1))   

 from (select avg(a) avg_a   

         from (select unnest(array1) a from array_tbl where id=2) t) t1,   

      (select unnest(array1) a from array_tbl where id=2) t2;   

（3）执行数组加减运算。 

select id, madlib.array_add(array1,array2), madlib.array_sub(array1,array2)    

  from array_tbl;   

结果： 

id  |          array_add               |        array_sub           

----+------------------------------+-------------------------   

  1 | {10,10,10,10,10,10,10,10,10} | {-8,-6,-4,-2,0,2,4,6,8}   

  2 | {1,1,0,-5,5,3,4,106,14}       | {1,1,0,5,-3,1,2,92,2}   

(2 rows)   

与数的加法一样，向量的加法也具有一些我们熟知的性质。如果 u、v 和 w 是 3 个向量，

那么向量的加法具有如下性质： 

� 向量加法的交换律，加的次序不影响结果：u + v = v + u。 

� 向量加法的结合律，相加时向量分组不影响结果：(u + v) + w = u + (v + w)。 

� 向量加法单位元存在性，存在一个零向量（zero vector），简记为 0，是单位元。对于任

意向量 u，有 u + 0 = u。 

� 向量加法逆元存在性，对于每个向量 u，都存在一个逆向量-u，使得 u + (-u) = 0。 

（4）数组乘以一个标量。 

select id,  

madlib.array_scalar_mult(array1,3), madlib.array_scalar_mult(array1,-3)    

  from array_tbl;   

结果： 

 id |      array_scalar_mult      |         array_scalar_mult             

----+---------------------------+------------------------------------   

  1 | {3,6,9,12,15,18,21,24,27} | {-3,-6,-9,-12,-15,-18,-21,-24,-27}   

  2 | {3,3,0,0,3,6,9,297,24}    | {-3,-3,0,0,-3,-6,-9,-297,-24}   

(2 rows)   



 

18 

SQL机器学习库 MADlib技术解析 

标量乘改变向量的量值，若标量是正则方向不变，若标量为负则方向相反。假设 u 和 v

是向量、α和β是标量（数），向量的标量乘法具有如下性质： 

� 标量乘法的结合律。被两个标量乘的次序不影响结果：α(βu) =(αβ)u。 

select id,   

       madlib.array_scalar_mult(madlib.array_scalar_mult(array1,3),2),   

       madlib.array_scalar_mult(madlib.array_scalar_mult(array1,2),3)   

  from array_tbl;   

结果： 

 id |      array_scalar_mult        |      array_scalar_mult         

----+-----------------------------+-----------------------------   

  1 | {6,12,18,24,30,36,42,48,54} | {6,12,18,24,30,36,42,48,54}   

  2 | {6,6,0,0,6,12,18,594,48}     | {6,6,0,0,6,12,18,594,48}   

(2 rows)   

� 标量加法对标量与向量乘法的分配率。两个标量相加后乘以一个向量等于每个标量乘以

该向量之后的结果向量相加：(α+β)u =αu +βu。 

select id,   

       madlib.array_scalar_mult(array1,5),   

       madlib.array_add   

       (madlib.array_scalar_mult(array1,2),madlib.array_scalar_mult(array1,3))   

  from array_tbl;   

结果： 

 id |       array_scalar_mult       |          array_add             

----+-----------------------------+-----------------------------   

  1 | {5,10,15,20,25,30,35,40,45} | {5,10,15,20,25,30,35,40,45}   

  2 | {5,5,0,0,5,10,15,495,40}     | {5,5,0,0,5,10,15,495,40}   

(2 rows)   

� 标量乘法对向量加法的分配率。两个向量相加之后的和与一个标量相乘等于每个向量与

该标量相乘然后相加：α(u + v) =αu + αv。 

select id,   

       madlib.array_scalar_mult(madlib.array_add(array1, array2),3),   

       madlib.array_add   

       (madlib.array_scalar_mult(array1,3),madlib.array_scalar_mult(array2,3))   

  from array_tbl;   

结果： 

id  |      array_scalar_mult          |          array_add              

----+------------------------------+------------------------------   



 

19 

第 2章  数据类型

  1 | {30,30,30,30,30,30,30,30,30} | {30,30,30,30,30,30,30,30,30}   

  2 | {3,3,0,-15,15,9,12,318,42}    | {3,3,0,-15,15,9,12,318,42}   

(2 rows)   

� 标量单位元的存在性。如果α = 1，那么对于任何向量 u都有αu = u。 

由向量加法和标量与向量乘法引出了向量空间的概念。向量空间（vector space）是向量

的集合，连同一个相关联的标量集（如实数集），满足上述性质，并且向量加法和标量与向

量乘法是封闭的。封闭是指向量相加的结果、向量与标量相乘的结果都是原向量集中的向量。

向量空间具有如下性质：任何向量都可以用一组称作基（basis）的向量线性组合（linear 

combination）表示。更明确地说，如果��，…，��是基向量，那对于任意向量 v，都可以找

到 n 个标量的集合{��，…，��}使得 v = ∑ ����
�
��� 。我们称基向量生成（span）了该向量空

间。向量空间的维（dimension）是形成基所需要的最少向量数。通常，我们选取具有单位长

度的基向量。 

基向量通常是正交的（orthogonal）。向量正交是直线垂直的二维概念的推广。从概念上

讲，正交向量是不相关的或独立的。如果基向量是相互正交的，那么将向量表示成基向量的

线性组合事实上把该向量分解成一些独立分量（independent component）。 

因此，n 维空间的向量可以看作标量（数）的 n 元组。为了具体地解释，考虑二维欧几

里得空间，其中每个点都与一个表示该点到原点的位移的向量相关联。到任意点的位移向量

都可以用 x方向和 y方向的位移和表示。这些位移分别是该点的 x和 y坐标。 

我们使用记号 v = (v1, v2, …, vn-1, vn)引述向量 v的分量。注意，vi是向量 v的一个分量，

而��是向量集中的一个向量。从向量的分量角度看，向量的加法变得简单并易于理解。为了

将两个向量相加，我们只需要简单地将对应的分量相加。例如，(2,3)+(4,2)=(6,5)。为了计算

标量乘以向量，我们只需要用标量乘以每个分量即可，如 3×(2,3) = (6,9)。 

（5）数组乘除。注意，这里过滤掉 id=2的行，否则查询会因为除零错误而失败。 

select id, 

madlib.array_mult(array1,array2), madlib.array_div(array1,array2)    

  from array_tbl    

 where 0 != all(array2);   

结果： 

id |           array_mult          |      array_div         

---+----------------------------+---------------------   

 1 | {9,16,21,24,25,24,21,16,9} | {0,0,0,0,1,1,2,4,9}   

(1 row)   

参与计算的两个数组都是整型，结果也是整型，因此除法运算的结果都被取整。与加法

类似，数组乘除运算实际也就是向量分量上的乘除： 

select array_agg(a * b), array_agg(a/b)   

 from (select unnest(array1) a, unnest(array2) b   

         from array_tbl where id=1) t;   



 

20 

SQL机器学习库 MADlib技术解析 

结果： 

        array_agg              |      array_agg         

---------------------------+---------------------   

{9,16,21,24,25,24,21,16,9} | {0,0,0,0,1,1,2,4,9}   

(1 row) 

（6）计算数组点积。 

select id, madlib.array_dot(array1,array2)    

  from array_tbl;   

结果： 

id  | array_dot    

----+-----------   

  1 |       165   

  2 |       750   

(2 rows)   

两个向量 u 和 v 的点积 u·v 的定义为：u·v = ∑ �����
��� 。也就是说，两个向量的点积

用向量对应分量的乘积的和来计算，如下面的查询结果为 750。 

select sum(a * b)   

  from (select unnest(array1) a, unnest(array2) b   

          from array_tbl where id=2) t;   

由点积的定义来说明何谓两个向量正交。在欧式空间中，可以证明两个非零向量的点积

为 0 当且仅当它们是垂直的。从几何角度，两个向量定义一个平面，并且它们的点积为 0 当

且仅当这两个向量在平面内的夹角等于 90º。我们说这样的两个向量是正交的（orthogonal）。 

（7）向量规范化。 

select madlib.normalize(array1) from array_tbl;   

结果： 

{0.0592348877759092,0.118469775551818,0.177704663327728,0.236939551103637,0.29

6174438879546,0.355409326655455,0.41464421   

4431365,0.473879102207274,0.533113989983183}   

{0.0100600363590491,0.0100600363590491,0,0,0.0100600363590491,0.02012007271809

82,0.0301801090771473,0.995943599545862,0.   

0804802908723929}   

(2 rows)   

点积也可以用来计算欧式空间中的向量长度： length(u)=√� · �。向量长度又称范数

（norm），并记作‖u‖。给定一个向量 u，我们可以通过用其长度除 u 的每个分量（通过

计算 u/‖u‖）找到一个向量，它与 u 指向相同的方向，但是具有单位长度。这称作将该向



 

21 

第 2章  数据类型

量规范化，具有��范数 1。根据规范化的定义，下面的查询与规范化函数结果相同： 

select madlib.array_scalar_mult   

(array1::float[],1/sqrt(madlib.array_dot(array1, array1)))   

  from array_tbl;   

并且可以使用下面的查询验证范数为 1： 

select id,sum(a)   

  from(select id,power(unnest(madlib.normalize(array1)),2) a from array_tbl)t 

group by id;   

给定向量范数，向量的点积也可以写成： 

u·v = ‖u‖‖v‖cos(θ) 

其中，θ是两个向量之间的夹角。把项分组并重新排列，上式可以改写成： 

u·v = (‖v‖cos(θ))‖u‖ = ��‖u‖ 

其中，vu= ‖v‖cos(θ)表示向量 v在 u的方向上的长度，如图 2-2所示。如果 u是单位向量，

那么该点积是 v 在 u 方向上的分量，称为 v 在 u 上的正交投影（orthogonal projection）。当

然，如果 v是单位向量，那么该点积也是 u在 v方向上的投影。 

v擅  

 

图 2-2  向量 v在向量 u方向的正交投影 

一个与正交性密切相关的概念是线性独立性（linear independent）。如果一个向量集中的

每个向量都不能表示成该集合中其他向量的线性组合，那么该集合是线性独立的。如果一个

向量集不是线性独立的，那么它们是线性依赖的（linear dependent）。我们希望基中每个向

量都不线性依赖于其余的基向量。如果选择相互正交（独立的）基向量，就会自动得到一个

线性独立的基向量集，因为任意两个向量都正交的向量集是线性独立的。 

（8）构造一个 9个元素的数组并将数组元素的值设为 1.3。 

select madlib.array_fill(madlib.array_of_float(9), 1.3::float);   

结果： 

             array_fill                  

--------------------------------------   

{1.3,1.3,1.3,1.3,1.3,1.3,1.3,1.3,1.3}   

(1 row) 

u

v

v
u
 



 

22 

SQL机器学习库 MADlib技术解析 

array_of_float 函数构造一个包含 9 个元素的数组，初始值为 0。array_fill 填充数组元素

值。array_fill函数中第一个参数的数组元素数据类型需要与第二个参数的数据类型相同。 

（9）过滤掉数组中的指定元素。 

select madlib.array_filter(array1),   

       madlib.array_filter(array1,2),   

       madlib.array_filter(array1,20)   

  from array_tbl;   

结果： 

     array_filter      |    array_filter      |     array_filter        

---------------------+--------------------+----------------------   

 {1,2,3,4,5,6,7,8,9} | {1,3,4,5,6,7,8,9}   | {1,2,3,4,5,6,7,8,9}   

 {1,1,1,2,3,99,8}     | {1,1,0,0,1,3,99,8} | {1,1,0,0,1,2,3,99,8}   

(2 rows) 

在没有给出第二个参数的情况下，madlib.array_filter 函数默认过滤掉数组中的 0 元素，

如果给出了第二个元素，就从第一个参数指定的数组中过滤掉该值。如果值在数组中不存在，

就返回原数组。 

（10）将二维数组列展开为一维数组集合。 

array_unnest_2d_to_1d 是 MADlib 1.11 版本新增的函数，用于将二维数组展开为一维数

组。1.10 版本并无此函数，但可以创建一个 UDF实现。 

create or replace function madlib.array_unnest_2d_to_1d(anyarray)      

returns table(unnest_row_id int,unnest_result anyarray) as      

$func$      

select d1,array_agg(val)      

 from (select $1[d1][d2] val,d1,d2      

         from generate_series(array_lower($1,1), array_upper($1,1)) d1,      

              generate_series(array_lower($1,2), array_upper($1,2)) d2      

        order by d1,d2) t       

 group by d1      

$func$ language sql immutable;   

之后就可以调用函数展开二维数组： 

select id,(madlib.array_unnest_2d_to_1d(val)).*      

  from (select 1::int as id, array[[1.3,2.0,3.2],[10.3,20.0,32.2]]::float8[][] 

as val          union all  select 2, array[[pi(),pi()/2],[2*pi(),pi()], 

[pi()/4,4*pi()]]::float8[][])t      

 order by 1,2;   



 

23 

第 2章  数据类型

结果： 

id | unnest_row_id |            unnest_result                

---+---------------+--------------------------------------   

 1 |             1    | {1.3,2,3.2}   

 1 |             2    | {10.3,20,32.2}   

 2 |             1    | {3.14159265358979,1.5707963267949}   

 2 |             2    | {6.28318530717959,3.14159265358979}   

 2 |             3    | {0.785398163397448,12.5663706143592}   

(5 rows)   

2.1.2  稀疏向量 

有些数据集具有非对称特征，一个对象的大部分属性值都为 0，在许多情况下，非零项

还不到 1%。实际上，稀疏性（sparsity）是一个优点，因为只有非零值才需要存储和处理，

这将节省大量的计算时间和存储空间。此外，有些机器学习算法仅适合处理稀疏数据。 

1. MADlib的稀疏向量 

MADlib 的 svec 模块实现了一种稀疏向量数据类型，能够为包含大量重复元素的向量提

供压缩存储。浮点数组可进行各种计算，有时会有很多的零或其他默认值，在科学计算、零

售优化、文本处理等应用中是很常见的。每个浮点数在内存或磁盘中占用 8 字节，节省多个

零值的存储空间通常是有益的，而且跳过零值对于很多向量计算也会提升性能。 

MADlib 1.10 版本仅支持 FLOAT8 稀疏向量类型。例如，有如下 float8[]数据类型的数组： 

'{0, 33,...40000个 0..., 12, 22 }'::float8[] 

这个数组会占用 320KB 的内存或磁盘，而其中绝大部分存储的是 0 值。即使我们利用

null 位图将 0作为 null 存储，还是会得到一个 5KB（40000/8）的 null 位图，内存使用效率还

是不够高。何况在执行数组操作时，40000 个零列上的计算结果并不重要。为了解决这个向

量存储问题，svec类型使用行程长度编码（Run Length Encoding，RLE），即用一个数-值对

数组表示稀疏向量。上面的数组以这种方式被存储为： 

'{1,1,40000,1,1}:{0,33,0,12,22}'::madlib.svec 

就是说 1个 0、1个 33、40000个 0等，只使用 5个整型和 5个浮点数类型构成数组存储。

除了节省空间，这种 RLE表示也很容易实现向量操作，并使向量计算更快。svec模块提供了

稀疏向量数据类型相关的函数库。 

2. 创建稀疏向量 

可以利用以下四种方式创建稀疏向量。 

（1）直接使用常量表达式构建一个 svec。 

select'{n1,n2,...,nk}:{v1,v2,...vk}'::madlib.svec;   



 

24 

SQL机器学习库 MADlib技术解析 

其中 n1、n2、...、nk分别指定值 v1、v2、...、vk的个数，例如： 

dm=# select'{1,3,5}:{2,4,6}'::madlib.svec;     

      svec          

-----------------   

 {1,3,5}:{2,4,6}   

row)   

（2）将一个 float数组转换成 svec。 

select('{v1,v2,...vk}'::float[])::madlib.svec;   

例如： 

dm=# select ('{2,4,4,4,6,6,6,6,6}'::float[])::madlib.svec;   

      svec          

-----------------   

 {1,3,5}:{2,4,6}   

row)   

（3）使用聚合函数创建一个 svec，例如： 

 dm=# select madlib.svec_agg(v1) from generate_series(1,10) v1;   

                   svec_agg                      

----------------------------------------------   

 {1,1,1,1,1,1,1,1,1,1}:{1,2,3,4,5,6,7,8,9,10}   

row) 

（4）利用 madlib.svec_cast_positions_float8arr()函数创建 svec，例如： 

dm=# select madlib.svec_cast_positions_float8arr(array[1,3,5], array[2,4,6], 

10, 0.0);   

 svec_cast_positions_float8arr    

-------------------------------   

 {1,1,1,1,1,5}:{2,0,4,0,6,0}   

(1 row)   

此查询语句的含义是，生成一个 10 个元素的 svec 向量，其中 1、3、5 位置上的值分别

是 2、4、6，其他位置的值为 0。svec 模块的 svec_cast_positions_float8arr 函数提供了从给定

的位置数组和值数组声明一个稀疏向量的功能。下面再看一个例子： 

dm=# select madlib.svec_cast_positions_float8arr(    

dm(#        array[1,2,7,5,87],array[.1,.2,.7,.5,.87],90,0.0);   

            svec_cast_positions_float8arr               

-----------------------------------------------------   

 {1,1,2,1,1,1,79,1,3}:{0.1,0.2,0,0.5,0,0.7,0,0.87,0}   

(1 row)   



 

25 

第 2章  数据类型

第一个整数数组表示第二个浮点数数组的位置，即结果数组的第 1、2、5、7、87下标对

应的值分别为 0.1、0.2、0.5、0.7、0.87。位置本身不需要有序，但要和值的顺序保持一致。

第三个参数表示数组的最大维数。小于 1 最大维度将被忽略，此时数组的最大维度就是位置

数组中的最大下标。最后的参数表示没有提供下标的位置上的值。 

3. 稀疏向量示例 

（1）简单示例 

对 svec 类型可以应用<、>、*、**、/、=、+、SUM 等操作和运算，并且具有典型的向

量操作的相关含义。例如，加法（+）操作是对两个向量中相同下标对应的元素进行相加。

为了使用 svec模块中定义的运算符，需要将 madlib模式添加到 search_path中。 

dm=# -- 将 madlib模式添加到搜索路径中      

dm=# set search_path="$user",public,madlib;      

SET   

dm=# -- 稀疏向量相加      

dm=# select ('{0,1,5}'::float8[]::madlib.svec     

dm(#         + '{4,3,2}'::float8[]::madlib.svec)::float8[];    

 float8     

---------   

 {4,4,7}   

(1 row)   

如果最后不转换成 float8[]，结果就是一个 svec类型： 

dm=# select ('{0,1,5}'::float8[]::madlib.svec     

dm(#        + '{4,3,2}'::float8[]::madlib.svec);    

  ?column?      

-------------   

 {2,1}:{4,7}   

(1 row)   

两个向量的点积（%*%）结果是 FLOAT8类型，如(0*4 + 1*3 + 5*2) = 13： 

dm=# select '{0,1,5}'::float8[]::madlib.svec     

dm-#       %*% '{4,3,2}'::float8[]::madlib.svec;     

 ?column?    

----------   

       13   

(1 row)   

有些聚合函数对 svec也是可用的，如 svec_count_nonzero。 

drop table if exists list;      

create table list (a madlib.svec);      



 

26 

SQL机器学习库 MADlib技术解析 

insert into list values     

('{0,1,5}'::float8[]::madlib.svec),('{10,0,3}'::float8[]::madlib.svec),     

('{0,0,3}'::float8[]::madlib.svec),('{0,1,0}'::float8[]::madlib.svec);   

svec_count_nonzero函数统计 svec中每一列非 0 元素的个数，返回计数的 svec。 

dm=# select madlib.svec_count_nonzero(a)::float8[] from list;   

 svec_count_nonzero    

--------------------   

 {1,2,3}   

(1 row)   

svec数据类型中不应该使用 NULL，因为 NULL会显式表示为 NVP（No Value Present）。 

dm=# select'{1,2,3}:{4,null,5}'::madlib.svec;    

       svec           

-------------------   

 {1,2,3}:{4,NVP,5}   

(1 row)   

含有 NULL的 svec相加，结果中显示 NVP。 

dm=# select '{1,2,3}:{4,null,5}'::madlib.svec     

dm-#       + '{2,2,2}:{8,9,10}'::madlib.svec;    

         ?column?            

--------------------------   

 {1,2,1,2}:{12,NVP,14,15}   

(1 row)   

可以使用 svec_proj()函数访问 svec 元素，该函数的参数为一个 svec和一个元素下标。 

dm=# select madlib.svec_proj('{1,2,3}:{4,5,6}'::madlib.svec, 1)     

dm-#        + madlib.svec_proj('{4,5,6}:{1,2,3}'::madlib.svec, 15);   

 ?column?    

----------   

        7   

(1 row)   

通过 svec_subvec()函数可以访问一个 svec 的子向量，该函数的参数为一个 svec 及其起

止下标。 

dm=# select madlib.svec_subvec('{2,4,6}:{1,3,5}'::madlib.svec, 2, 11);   

   svec_subvec      

-----------------   

 {1,4,5}:{1,3,5}   

(1 row)   



 

27 

第 2章  数据类型

svec 的元素/子向量可以通过 svec_change()函数进行改变。该函数有三个参数：一个 m

维的 svec sv1，起始下标 j，一个 n维的 svec sv2，其中 j + n - 1 ≤ m，返回类似 sv1的 svec，

但子向量 sv1[j:j+n-1]被 sv2所替换。 

dm=# select madlib.svec_change('{1,2,3}:{4,5,6}'    

dm(#        ::madlib.svec,3,'{2}:{3}'::madlib.svec);   

     svec_change        

---------------------   

 {1,1,2,2}:{4,5,3,6}   

(1 row)   

还有处理 svec 的高阶函数，如 svec_lapply 对应 R 语言中的 lapply()函数。这里的所谓高

阶函数，可以简单理解为函数（svec_lapply）的参数是函数名（sqrt）。 

dm=# select madlib.svec_lapply('sqrt','{1,2,3}:{4,5,6}'::madlib.svec);    

                  svec_lapply                     

-----------------------------------------------   

 {1,2,3}:{2,2.23606797749979,2.44948974278318}   

row)   

（2）扩展示例 

下面的示例是稀疏向量的一个具体应用，说明如何将文档转化为稀疏向量，并进一步对

文档归类。假设有一个由若干单词组成的文本数组：  

drop table if exists features;      

create table features (a text[]);      

insert into features values      

      ('{am,before,being,bothered,corpus,document,i,in,is,me,      

         never,now,one,really,second,the,third,this,until}');   

同时有一个文档集合，每个文档表示为一个单词数组： 

drop table if exists documents;      

create table documents(a int,b text[]);      

insert into documents values      

      (1,'{this,is,one,document,in,the,corpus}'),      

      (2,'{i,am,the,second,document,in,the,corpus}'),      

      (3,'{being,third,never,really,bothered,me,until,now}'),      

      (4,'{the,document,before,me,is,the,third,document}');   

如果忽略词的顺序，文档就可以用词向量表示，其中每个词是向量的一个分量（属性），

而每个分量的值对应词在文档中出现的次数。文档集合的这种表示通常称作文档-词矩阵

（document-term matrix）。文档是矩阵的行，词是矩阵的列。实践应用时，仅存放稀疏数据

矩阵的非零项。 

现在有了字典和文档，我们要对每个文档中出现单词的数量和比例应用向量运算，将文



 

28 

SQL机器学习库 MADlib技术解析 

档进行分类。在开始处理前，需要找到每个文档中出现的字典中的单词。我们为每个文档创

建一个稀疏特征向量（Sparse Feature Vector，SFV）。SFV是一个 N 维向量，N是字典单词

的数量，SFV 中的每个元素都是文档中对每个字典单词的计数。svec 模块中有一个函数可以

从文档创建 SFV： 

dm=# select madlib.svec_sfv((select a from features limit 1),b)::float8[]     

dm-#   from documents;     

                   svec_sfv                    

-----------------------------------------   

 {0,0,0,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0}   

 {1,0,0,0,1,1,1,1,0,0,0,0,0,0,1,2,0,0,0}   

 {0,0,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1}   

 {0,1,0,0,0,2,0,0,1,1,0,0,0,0,0,2,1,0,0}   

(4 rows)   

注意，madlib.svec_sfv()函数的输出是每个文档一个向量，元素值是相应字典顺序位置上

单词在文档中出现的次数。通过对比特征向量和文档，更容易理解这一点： 

dm=# \x   

Expanded display is on.   

dm=# select madlib.svec_sfv((select a from features),b)::float8[], b    

dm-#   from documents;   

-[ RECORD 1 ]----------------------------------------------   

svec_sfv | {0,0,0,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0}   

b     | {this,is,one,document,in,the,corpus}   

-[ RECORD 2 ]----------------------------------------------   

svec_sfv | {1,0,0,0,1,1,1,1,0,0,0,0,0,0,1,2,0,0,0}   

b     | {i,am,the,second,document,in,the,corpus}   

-[ RECORD 3 ]----------------------------------------------   

svec_sfv | {0,0,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1}   

b     | {being,third,never,really,bothered,me,until,now}   

-[ RECORD 4 ]----------------------------------------------   

svec_sfv | {0,1,0,0,0,2,0,0,1,1,0,0,0,0,0,2,1,0,0}   

b     | {the,document,before,me,is,the,third,document} 

可以看到文档"i am the second document in the corpus"的 SFV为{1,3*0,1,1,1,1,6*0,1,2,3*0}。

单词“am”是字典中的第一个单词，并且在文档中只出现一次。单词“before”没有出现在

文档中，所以值为 0，以此类推。函数 madlib.svec_sfv()能够将大量文档高速并行转换为对应

的 SFV。 

分类处理的其余部分都是向量运算。实际应用中很少使用实际计数值，而是将计数转为

权重。最普通的权重叫作 tf/idf，对应术语是 Term Frequency / InverseDocument Frequency（词

频-逆文档频率）。对给定文档中给定单词的权重计算公式为： 



 

29 

第 2章  数据类型

{#Times in document} * log {#Documents /#Documents the term appears in} 

例如，单词“document”在文档 A中的权重为 1 * log (4/3)，而在文档 D中的权重为 2 * 

log (4/3)。在每个文档中都出现的单词的权重为 0，因为 log(4/4) = log(1) = 0，仅出现在一个

文档中的词具有最大权重 log（文档数量）。TF-IDF 是一种统计方法，用以评估一个词对于

一个文件集或一个资料库其中一个文档的重要程度。词的重要性随着它在文档中出现的次数

成正比增加，但同时会随着它在资料库中出现的频率成反比下降。简单来说就是一个词在一

篇文档中出现的次数越多，同时在所有文档中出现的次数越少，越能够代表该文章。 

对于这部分处理，我们需要一个具有字典维数（19）的稀疏向量，元素值为： 

log(#documents/#Documents each term appearsin) 

整个文档列表对应单一上述向量。#documents 是文档总数，本例中是 4，但对于每个字

典单词都对应一个分母，其值为出现该单词的文档数。这个向量再乘以每个文档 SFV 中的计

数，结果即为 tf/idf 权重。 

drop table if exists corpus;      

create table corpus     

as (select a, madlib.svec_sfv((select a from features),b) sfv      

     from documents);      

   

drop table if exists weights;      

create table weights     

as (select a docnum, madlib.svec_mult(sfv,logidf) tf_idf      

     from (select madlib.svec_log(madlib.svec_div(    

                   count(sfv)::madlib.svec,   

                  madlib.svec_count_nonzero(sfv))) logidf    

              from corpus) foo, corpus order by docnum);     

查询权重： 

dm=# select * from weights;   

 docnum | tf_idf                                 

--------+-----------------------------------------------------------------   

------------------------------------------   

      1 | 

{4,1,1,1,2,3,1,2,1,1,1,1}:{0,0.693147180559945,0.287682072451781,0,0.69314718

0559945,0,1.38629436111989,0,0.287682072451781,0,1.38629436111989,0}   

      2 | 

{1,3,1,1,1,1,6,1,1,3}:{1.38629436111989,0,0.693147180559945,0.287682072451781, 

1.38629436111989,0.693147180559945,0,1.38629436111989,0.575364144903562,0}   

      3 | {2,2,5,1,2,1,1,2,1,1,1}:{0,1.38629436111989,0,0.693147180559945, 

1.38629436111989,0,1.38629436111989,0,0.693147180559945,0,1.38629436111989}   



 

30 

SQL机器学习库 MADlib技术解析 

      4 | {1,1,3,1,2,2,5,1,1,2}:{0,1.38629436111989,0,0.575364144903562,0, 

0.693147180559945,0,0.575364144903562,0.693147180559945,0}   

(4 rows)   

尽管文档具有数以百千计或数以万计的属性（词），但是每个文档向量都是稀疏的，因

为它具有相对较少的非零属性值。这样，相似性不能依赖共享 0 的个数，因为任意两个文档

多半不会包含许多相同的词，如果统计 0-0 匹配，那么大多数文档都会与其他大部分文档非

常类似。因此文档的相似性度量需要忽略 0-0 匹配，而且必须能处理非二元向量。下面定义

的余弦相似度（cosinesimilarity）就是文档相似性最常用的度量之一。如果 x和 y是两个文档

向量，则： 

cos(	,
) =
	 ∙ 


‖	‖‖
‖
 

其中，“∙”表示向量点积，	 ∙ 
 = ∑ 		
	�
	�� ，‖	‖是向量 x 的长度，‖	‖ = �∑ 		��

	�� =√	 ∙ 	。 

现在就可以使用文档向量点积的 ACOS 获得一个文档与其他文档的“角距离”。下面计

算第一个文档与其他文档的角距离： 

dm=# select docnum, 180. *     

dm-#        (acos(madlib.svec_dmin(1., madlib.svec_dot(tf_idf, testdoc)     

dm(#        / (madlib.svec_l2norm(tf_idf)    

dm(#        * madlib.svec_l2norm(testdoc))))/3.141592654) angular_distance      

dm-#   from weights,    

dm-#        (select tf_idf testdoc from weights where docnum = 1 limit 1) foo     

dm-#  order by 1;    

 docnum | angular_distance    

--------+------------------   

      1  |                0   

      2  | 78.8235846096986   

      3  | 89.9999999882484   

      4  | 80.0232034288617   

(4 rows)   

可以看到文档 1与自己的角距离为 0度，而文档 1与文档 3的角距离为 90度，因为它们

之间没有任何相同的单词。 

2.2  矩阵 

矩阵可以用来表示数据集，描述数据集上的变换，是 MADlib 中数据的基本格式，通常



 

31 

第 2章  数据类型

使用二维数组数据类型。MADlib 中的向量是一维数组，可看作是矩阵的一种特殊形式。

MADlib 的矩阵运算模块（matrix_ops）实现 SQL 中的矩阵操作。本节将介绍矩阵的概念，

说明MADlib 矩阵运算相关函数，并举出一些简单的函数调用示例。 

2.2.1  矩阵定义 

矩阵（matrix）是把数集合汇聚成行和列的一种表表示。术语“m × n 矩阵”通常用来说

明矩阵具有 m行和 n列。下面所示的矩阵 A是 2 × 3 矩阵。如果 m=n，则我们称该矩阵为方

阵（square matrix）。矩阵 A的转置记作 A
T
（通过交换 A的行和列得到）。 

� = 
2 6 1

7 5 2
�        �
 = �2 7

6 5

1 2

� 
矩阵的元素用带下标的小写字母表示。对于矩阵 A，���是其第 i 行第 j 列的元素。行自

上而下编号，列自左向右编号，编号从 1 开始。例如，���是矩阵 A 的第 2 行第 1 列的元素，

该元素的值是 7。 

矩阵的每一行或列定义一个向量。对于矩阵 A，其第 i个行向量（row vector）可以用a�∗

表示，第 j个列向量（column vector）用a∗�表示。使用前面的例子，a�∗ = [7 5 2]，而a∗� = 

[1 2]
。注意，行向量和列向量都是矩阵，必须加以区分，即元素个数相同并且值相同的行

向量和列向量代表不同的矩阵。 

2.2.2  MADlib中的矩阵表示 

MADlib支持稠密和稀疏两种矩阵表示形式，所有矩阵运算都以任一种表示形式工作。 

1. 稠密 

矩阵被表示为一维数组的行集合，例如 3×10的矩阵如下： 

row_id |         row_vec     

-------+-------------------------     

  1     | {9,6,5,8,5,6,6,3,10,8}     

  2     | {8,2,2,6,6,10,2,1,9,9}     

  3     | {3,9,9,9,8,6,3,9,5,6}   

row_id 列表示每一行的行号，是从 1 到 N 没有重复值的连续整型序列，N 为矩阵的行数。

row_vec列对应构成矩阵每行的一维数组，即行向量。 

2. 稀疏 

使用行列下标指示矩阵中每一个非零项，例如： 

row_id | col_id | value     

-------+--------+-------     

     1  |      1   |     9     

     1  |      5   |     6     



 

32 

SQL机器学习库 MADlib技术解析 

     1  |      6   |     6     

     2  |      1   |     8     

     3  |      1   |     3     

     3  |      2   |     9     

     4  |      7   |     0   

常用这种方式表示包含多个零元素的稀疏矩阵。上面的例子只用 6行表示一个 4×7的矩

阵中的非零元素。矩阵的行列元素个数分别由 row_id和 col_id的最大值指定。注意最后一行，

即使 value 为 0 也要包含此行，它指出了矩阵的维度，而且指示矩阵的第 4 行与第 7 列的元

素值都是 0。 

对于稀疏矩阵表，row_id 和 col_id 列逻辑类似于关系数据库的联合主键，要求非空且唯

一。value列应该是标量简单数据类型。上面矩阵对应的稠密表示如下： 

row_id |     row_vec   

-------+-------------------------   

  1     | {9,0,0,0,6,6,0}   

  2     | {8,0,0,0,0,0,0}   

  3     | {3,9,0,0,0,0,0}   

  4     | {0,0,0,0,0,0,0} 

2.2.3  MADlib中的矩阵运算函数 

与向量操作相同，矩阵运算函数支持的元素数据类型也包括 SMALLINT、INTEGER、

BIGINT、FLOAT8和 NUMERIC（内部被转化为 FLOAT8，可能丢失精度）。 

1. 矩阵操作函数分类 

MADlib 的矩阵操作函数可分为表示、计算、提取、归约、创建、转换六类。下面列出

每一类中所包含的函数名称及其参数。 

（1）表示函数 

-- 转为稀疏矩阵 

matrix_sparsify( matrix_in, in_args, matrix_out, out_args) 

-- 转为稠密矩阵 

matrix_densify( matrix_in, in_args, matrix_out, out_args) 

-- 获取矩阵的维度  

matrix_ndims( matrix_in, in_args ) 

（2）计算函数 

-- 矩阵转置 

matrix_trans( matrix_in, in_args, matrix_out, out_args) 

-- 矩阵相加 

matrix_add( matrix_a, a_args, matrix_b, b_args, matrix_out, out_args) 



 

33 

第 2章  数据类型

-- 矩阵相减 

matrix_sub( matrix_a, a_args, matrix_b, b_args, matrix_out, out_args) 

-- 矩阵相乘 

matrix_mult( matrix_a, a_args, matrix_b, b_args, matrix_out, out_args) 

-- 数组元素相乘 

matrix_elem_mult( matrix_a, a_args, matrix_b, b_args, matrix_out, out_args) 

-- 标量乘矩阵 

matrix_scalar_mult( matrix_in, in_args, scalar, matrix_out, out_args) 

-- 向量乘矩阵 

matrix_vec_mult( matrix_in, in_args, vector) 

（3）提取函数 

-- 从行下标提取行 

matrix_extract_row( matrix_in, in_args, index) 

-- 从列下标提取列 

matrix_extract_col( matrix_in, in_args, index) 

-- 提取主对角线元素 

matrix_extract_diag( matrix_in, in_args) 

（4）归约函数（指定维度的聚合） 

-- 获取指定维度的最大值。如果 fetch_index = True，返回对应的下标 

matrix_max( matrix_in, in_args, dim, matrix_out, fetch_index) 

-- 获取指定维度的最小值。如果 fetch_index = True，返回对应的下标 

matrix_min( matrix_in, in_args, dim, matrix_out, fetch_index) 

-- 获取指定维度的和 

matrix_sum( matrix_in, in_args, dim) 

-- 获取指定维度的均值 

matrix_mean( matrix_in, in_args, dim) 

-- 获取矩阵范数 

matrix_norm( matrix_in, in_args, norm_type) 

（5）创建函数 

-- 创建一个指定行列维度的矩阵，用 1初始化元素值 

matrix_ones( row_dim, col_dim, matrix_out, out_args) 

-- 创建一个指定行列维度的矩阵，用 0初始化元素值 

matrix_zeros( row_dim, col_dim, matrix_out, out_args) 

-- 创建单位矩阵 

matrix_identity( dim, matrix_out, out_args) 

-- 用给定对角元素初始化矩阵 

matrix_diag( diag_elements, matrix_out, out_args) 



 

34 

SQL机器学习库 MADlib技术解析 

（6）转换函数 

-- 矩阵求逆 

matrix_inverse( matrix_in, in_args, matrix_out, out_args) 

-- 广义逆矩阵 

matrix_pinv( matrix_in, in_args, matrix_out, out_args) 

-- 矩阵特征提取 

matrix_eigen( matrix_in, in_args, matrix_out, out_args) 

-- Cholesky分解 

matrix_cholesky( matrix_in, in_args, matrix_out_prefix, out_args) 

-- QR分解 

matrix_qr( matrix_in, in_args, matrix_out_prefix, out_args) 

-- LU分解 

matrix_lu( matrix_in, in_args, matrix_out_prefix, out_args) 

-- 求矩阵的核范数 

matrix_nuclear_norm( matrix_in, in_args) 

-- 求矩阵的秩 

matrix_rank( matrix_in, in_args) 

矩阵转换函数仅基于内存操作实现。单一节点的矩阵数据被用于分解计算。这种操作只

适合小型矩阵，因为计算不是分布到多个节点执行的。 

2. 矩阵操作函数示例 

执行下面的脚本创建两个稠密表示的矩阵测试表并添加数据。mat_a 矩阵 4 行 4 列，

mat_b 矩阵 5行 4列。 

drop table if exists mat_a;     

create table mat_a (row_id integer, row_vec integer[]);     

insert into mat_a (row_id, row_vec) values    

(1, '{9,6,5,8}'), (2, '{8,2,2,6}'), (3, '{3,9,9,9}'), (4, '{6,4,2,2}');     

  

drop table if exists mat_b;     

create table mat_b (row_id integer, vector integer[]);    

insert into mat_b (row_id, vector) values    

(1, '{9,10,2,4}'), (2, '{5,3,5,2}'), (3, '{0,1,2,3}'), (4, '{2,9,0,4}'), (5, 

'{3,8,7,7}');   

（1）由稠密矩阵表生成稀疏表示的表 

drop table if exists mat_a_sparse;   

select madlib.matrix_sparsify('mat_a', 'row=row_id, val=row_vec',   

                                    'mat_a_sparse', 'col=col_id, val=val');   

 



 

35 

第 2章  数据类型

drop table if exists mat_b_sparse;   

select madlib.matrix_sparsify('mat_b', 'row=row_id, val=vector',   

                                    'mat_b_sparse', 'col=col_id, val=val');   

madlib.matrix_sparsify 函数将稠密表示矩阵表转为稀疏表示的矩阵表，四个参数分别指

定输入表名、输入表参数（代表行 ID 的列名、存储矩阵元素值的列名等）、输出表名、输

出表参数（代表列 ID的列名、存储矩阵元素值的列名等）。 

上面的例子将稠密矩阵转为稀疏表示，并新建表存储转换结果。源表的两列类型分别是

整型和整型数组，输出表包含三列，行 ID 列名与源表相同，列 ID 列和值列由参数指定。由

于 mat_a表的矩阵中不存在 0值元素，生成的稀疏矩阵表共有 16 条记录，而 mat_b中有两个

0值，因此稀疏表中只有 18 条记录。 

dm=# select * from mat_a_sparse order by row_id, col_id; 

 row_id | col_id | val  

--------+--------+----- 

      1  |      1  |   9 

      1  |      2  |   6 

… 

      4  |      3  |   2 

      4  |      4  |   2 

(16 rows) 

 

dm=# select * from mat_b_sparse; 

 row_id | col_id | val  

--------+--------+----- 

      1  |      1  |   9 

      1  |      2  |  10 

… 

      4  |      2  |   9 

      4  |      4  |   4 

(18 rows) 

（2）矩阵转置 

matrix_trans 函数的第一个参数是源表名，第二个参数指定行、列或值的字段名，第三个

参数为输出表名。 

-- 稠密格式 

drop table if exists mat_a_r;   

select madlib.matrix_trans('mat_a', 'row=row_id, val=row_vec','mat_a_r');   

select * from mat_a_r order by row_id;   



 

36 

SQL机器学习库 MADlib技术解析 

结果： 

row_id |  row_vec   

--------+----------- 

      1 | {9,8,3,6} 

      2 | {6,2,9,4} 

      3 | {5,2,9,2} 

      4 | {8,6,9,2} 

(4 rows) 

 

-- 稀疏格式 

drop table if exists mat_b_sparse_r;   

select madlib.matrix_trans('mat_b_sparse', 'row=row_id, col=col_id, 

val=val','mat_b_sparse_r');   

select * from mat_b_sparse_r order by row_id, col_id;   

结果： 

col_id | row_id | val  

--------+--------+----- 

      1 |      1 |   9 

      2 |      1 |   5 

… 

      4 |      4 |   4 

      5 |      4 |   7 

(18 rows) 

源矩阵 5行 4列，转置后的矩阵为 4行 5列。 

（3）提取矩阵的主对角线 

select madlib.matrix_extract_diag('mat_b', 'row=row_id, val=vector'), 

       madlib.matrix_extract_diag 

('mat_b_sparse_r', 'row=row_id, col=col_id, val=val'); 

结果： 

matrix_extract_diag | matrix_extract_diag  

---------------------+--------------------- 

 {9,3,2,4}           | {9,3,2,4} 

(1 row) 

matrix_extract_diag 函数的返回值是由对角线元素组成的数组。可以看到，矩阵和其对应

的转置矩阵具有相同的主对角线。也就是说，矩阵转置实际上是沿着主对角线的元素对折  

操作。 



 

37 

第 2章  数据类型

（4）创建对角矩阵 

drop table if exists mat_r;   

select madlib.matrix_diag(array[9,6,3,10],   

                          'mat_r', 'row=row_id, col=col_id, val=val');   

select * from mat_r order by row_id; 

结果： 

row_id | col_id | val  

--------+--------+----- 

      1 |      1 |   9 

      2 |      2 |   6 

      3 |      3 |   3 

      4 |      4 |  10 

(4 rows) 

madlib.matrix_diag 函数输出的是一个稀疏表示的对角矩阵表，如果不指定“col=col_id”，

输出表中代表列的列名为 col。 

（5）创建单位矩阵 

drop table if exists mat_r;   

select madlib.matrix_identity(4, 'mat_r');   

select * from mat_r;   

结果： 

row | col | val  

-----+-----+----- 

   4 |   4 |   1 

   2 |   2 |   1 

   1 |   1 |   1 

   3 |   3 |   1 

(4 rows) 

matrix_identity 函数创建一个稀疏表示的单位矩阵表。主对角线上的元素都为 1、其余元

素全为 0的方阵称为单位矩阵。 

（6）提取指定下标的行或列 

select madlib.matrix_extract_row('mat_a', 'row=row_id, val=row_vec', 2) as row, 

       madlib.matrix_extract_col 

('mat_b_sparse', 'row=row_id, col=col_id, val=val', 3) as col;   

结果返回两个向量，即 mat_a的第 2行、mat_b_sparse的第 3列： 

    row      |     col      

-----------+------------- 



 

38 

SQL机器学习库 MADlib技术解析 

 {8,2,2,6} | {2,5,2,0,7} 

(1 row) 

（7）获取指定维度的最大最小值及其对应的下标 

drop table if exists mat_max_r, mat_min_r;   

select madlib.matrix_max 

('mat_a', 'row=row_id, val=row_vec', 2, 'mat_max_r', true),   

       madlib.matrix_min 

('mat_b_sparse', 'row=row_id, col=col_id', 1, 'mat_min_r', true);   

select * from mat_max_r, mat_min_r;   

结果： 

   index    |    max      |   index    |    min     

-----------+-----------+-----------+----------- 

 {1,1,2,1} | {9,8,9,6} | {3,3,4,2} | {0,1,0,2} 

 (1 row) 

matrix_max 和 matrix_min 函数分别返回指定维度的最大值和最小值，其中维度参数的取

值只能是 1 或 2，分别代表行和列。返回值为数组类型，如果最后一个参数为‘true’，表示

结果中包含最大最小值对应的下标数组列。 

（8）创建元素为全 0的矩阵 

drop table if exists mat_r01, mat_r02;   

select madlib.matrix_zeros(3, 2, 'mat_r01', 'row=row_id, col=col_id, 

val=entry'),   

       madlib.matrix_zeros(3, 2, 'mat_r02', 'fmt=dense');  

select * from mat_r01; 

select * from mat_r02; 

结果分别为： 

 row_id | col_id | entry  

--------+--------+------- 

      3  |      2  |     0 

(1 row) 

 

 row |  val   

-----+------- 

   1 | {0,0} 

   3 | {0,0} 

   2 | {0,0} 

(3 rows) 

注意，元素值全为 0，所以稀疏表示的矩阵表只有 1行。 



 

39 

第 2章  数据类型

（9）创建元素为全 1的矩阵 

drop table if exists mat_r11, mat_r12;   

select madlib.matrix_ones(3, 2, 'mat_r11', 'row=row_id, col=col_id, 

val=entry'),   

       madlib.matrix_ones(3, 2, 'mat_r12', 'fmt=dense');  

select * from mat_r11 order by row_id; 

select * from mat_r12 order by row; 

结果分别为： 

row_id   | col_id | entry  

--------+--------+------- 

      1   |      2  |     1 

      1   |      1  |     1 

      2   |      2  |     1 

      2   |      1  |     1 

      3   |      2  |     1 

      3   |      1  |     1 

(6 rows) 

 

 row |  val   

-----+------- 

   1 | {1,1} 

   2 | {1,1} 

   3 | {1,1} 

(3 rows) 

因为元素值全为 1，所以稀疏表示的矩阵表有 6行。 

（10）获取行列维度数 

select madlib.matrix_ndims('mat_a', 'row=row_id, val=row_vec'), 

       madlib.matrix_ndims('mat_a_sparse', 'row=row_id, col=col_id'); 

结果： 

matrix_ndims | matrix_ndims  

-------------+-------------- 

 {4,4}        | {4,4} 

(1 row) 

（11）矩阵相加 

与向量一样，矩阵也可以通过将对应元素（分量）相加来求和。MADlib 的矩阵相加函

数要求两个矩阵具有相同的行数和列数。更明确地说，假定 A 和 B 都是 m × n的矩阵，A 和

B的和是 m × n矩阵 C，其元素由下式计算： 



 

40 

SQL机器学习库 MADlib技术解析 

��� = ��� + ��� 
drop table if exists mat_r;   

select madlib.matrix_add('mat_b', 'row=row_id, val=vector',   

                         'mat_b_sparse', 'row=row_id, col=col_id',   

                         'mat_r', 'val=vector, fmt=dense');   

select * from mat_r order by row_id; 

结果： 

row_id |    vector     

--------+-------------- 

      1 | {18,20,4,8} 

      2 | {10,6,10,4} 

      3 | {0,2,4,6} 

      4 | {4,18,0,8} 

      5 | {6,16,14,14} 

(5 rows) 

madlib.matrix_add 函数有三组参数，分别是两个相加的矩阵表和结果矩阵表。相加的两

个矩阵表不必有相同的表示形式，如上面的函数调用中，一个矩阵为稠密形式，一个矩阵为

稀疏形式，但两个矩阵必须具有相同的行列数，否则会报如下错误： 

Matrix error: The dimensions of the two matrices don't match 

矩阵加法具有如下性质： 

� 矩阵加法的交换律。加的次序不影响结果：A + B = B + A。 

� 矩阵加法的结合律。相加时矩阵分组不影响结果：(A + B) + C = A + (B + C)。 

� 矩阵加法单位元的存在性。存在一个零矩阵（zero matrix），其元素均为 0 并简记为 0，

是单位元。对于任意矩阵 A，有 A + 0 = A。 

� 矩阵加法逆元的存在性。对于每个矩阵 A，都存在一个矩阵-A，使得 A + (-A) = 0。-A的

元素为−���。 

（12）标量与矩阵相乘 

与向量一样，也可以用标量乘以矩阵。标量α和矩阵 A 的乘积是矩阵 B =αA，其元素

由下式给出： ��� = ���� 
例如，下面 matrix_scalar_mult 函数执行结果是由原矩阵的每个元素乘以 3 构成的矩阵表。 

drop table if exists mat_r;   

select madlib.matrix_scalar_mult('mat_a', 'row=row_id, val=row_vec', 3, 

'mat_r');   

select * from mat_r order by row_id;   

结果： 



 

41 

第 2章  数据类型

row_id  |    row_vec     

--------+--------------- 

      1  | {27,18,15,24} 

      2  | {24,6,6,18} 

      3  | {9,27,27,27} 

      4  | {18,12,6,6} 

(4 rows) 

矩阵的标量乘法具有与向量的标量乘法非常相似的性质。 

� 标量乘法的结合律，被两个标量乘的次序不影响结果：α(βA) = (αβ)A。 

� 标量加法对标量与矩阵乘法的分配率，两个标量相加后乘以一个矩阵等于每个标量乘以

该矩阵之后的结果矩阵相加：(α+β)A =αA +βA。 

� 标量乘法对矩阵加法的分配率，两个矩阵相加之后的和与一个标量相乘等于每个矩阵与

该标量相乘然后相加：α(A + B)=αA + αB。 

� 标量单位元的存在性，如果α=1，则对于任意矩阵 A，有αA = A。 

我们可以认为矩阵由行向量或列向量组成，因此矩阵相加或用标量乘以矩阵等于对应行

向量或列向量相加或用标量乘它们。 

（13）矩阵乘法 

我们可以定义矩阵的乘法运算。先定义矩阵与向量的乘法。矩阵与列向量的乘法：m × n

矩阵 A乘以 n ×1的列矩阵 u的积是 m ×1的列矩阵 v = Au，其元素由下式给出： �� = a�∗ ∙ �
 

换言之，我们取 A 的每个行向量与 u 的转置的点积。注意，在下面的例子中，u 的行数

必然与 A的列数相等。 


3 1

1 2
� 
5

2
� = 
17

9
� 

类似地，我们可以定义矩阵被行向量左乘。矩阵与行向量的乘法：1 × m 的行矩阵 u 乘

以 m × n矩阵 A的积是 1 × n的行矩阵 v = uA，其元素由下式给出： �� = � ∙ (a∗�)
 

换言之，我们取该行向量与矩阵 A的每个列向量的转置的点积。下面给出一个例子： �1 2� 
5 4

2 9
� = �9 22� 

MADlib 的 matrix_vec_mult 函数用于计算一个 m × n 矩阵乘以一个 1×n 的矩阵（向量），

结果是一个 1 × m 的矩阵。如下面的 5 × 4 的矩阵 mat_b 乘以一个 1×4 的矩阵，结果是一个

1 × 5的矩阵。 

dm=# select * from mat_b; 

 row_id |   vector    

--------+------------ 



 

42 

SQL机器学习库 MADlib技术解析 

      1  | {9,10,2,4} 

      2  | {5,3,5,2} 

      3  | {0,1,2,3} 

      4  | {2,9,0,4} 

      5  | {3,8,7,7} 

(5 rows) 

 

dm=# select madlib.matrix_vec_mult('mat_b', 'row=row_id, val=vector',   

dm(#                               array[1,2,3,4]);  

 matrix_vec_mult   

------------------ 

 {51,34,20,36,68} 

(1 row) 

可以用下面的查询验证矩阵乘以向量的结果。 

dm=# select array_agg(madlib.array_dot(vector,array[1,2,3,4])) from mat_b; 

    array_agg      

------------------ 

 {51,34,20,36,68} 

(1 row) 

我们定义两个矩阵的乘积，作为上述概念的推广。m × n 矩阵 A 与 n × p 矩阵 B 的积是

m × p矩阵 C（C=AB），其元素由下式给出： �
� = a�∗ ∙ (�∗�)
 

换言之，C的第 ij个元素是 A的第 i个行向量与 B的第 j个列向量转置的点积。 

matrix_mult 函数用于矩阵相乘。如前所述，第一组参数中的矩阵列数应该与第二组参数

中的矩阵行数相同，否则会报错： 

dm=# select * from mat_a; 

 row_id |  row_vec   

--------+----------- 

      1  | {9,6,5,8} 

      2  | {8,2,2,6} 

      3  | {3,9,9,9} 

      4  | {6,4,2,2} 

(4 rows) 

 

dm=# select * from mat_b; 

 row_id |   vector    

--------+------------ 

      1  | {9,10,2,4} 



 

43 

第 2章  数据类型

      2  | {5,3,5,2} 

      3  | {0,1,2,3} 

      4  | {2,9,0,4} 

      5  | {3,8,7,7} 

(5 rows) 

 

dm=# drop table if exists mat_r;   

NOTICE:  table "mat_r" does not exist, skipping 

DROP TABLE 

dm=# select madlib.matrix_mult('mat_a', 'row=row_id, val=row_vec',   

dm(#                                'mat_b', 'row=row_id, val=vector',   

dm(#                                'mat_r');   

ERROR:  plpy.Error: Matrix error: Dimension mismatch for matrix 

multiplication. (plpython.c:4663) 

DETAIL:  Left matrix, col dimension = 4, Right matrix, row dimension = 5 

CONTEXT:  Traceback (most recent call last): 

  PL/Python function "matrix_mult", line 26, in <module> 

    matrix_out, out_args) 

  PL/Python function "matrix_mult", line 1633, in matrix_mult 

  PL/Python function "matrix_mult", line 49, in _assert 

PL/Python function "matrix_mult" 

dm=# 

可以对 mat_b 先进行转置，再与 mat_a 相乘。matrix_mult 函数调用时的 trans=true 参数

表示先对 mat_b表行列转置再进行矩阵乘法。这次的矩阵乘法计算将正常执行。 

drop table if exists mat_r;   

select madlib.matrix_mult('mat_a', 'row=row_id, val=row_vec',   

                               'mat_b', 'row=row_id, val=vector, trans=true',   

                               'mat_r');   

select * from mat_r order by row_id;   

结果是一个 4×5 矩阵： 

row_id   |       row_vec         

---------+---------------------- 

      1   | {183,104,40,104,166} 

      2   | {120,68,24,58,96} 

      3   | {171,105,54,123,207} 

      4   | {106,56,14,56,78} 

(4 rows) 

执行结果与下面的查询相同。 



 

44 

SQL机器学习库 MADlib技术解析 

drop table if exists mat_r;   

select madlib.matrix_mult('mat_a', 'row=row_id, val=row_vec',   

                               'mat_b_sparse_r', 'row=row_id, col=col_id, val=val', 

                               'mat_r');   

select * from mat_r order by row_id;   

矩阵乘法具有如下性质。 

� 矩阵乘法的结合律，矩阵乘的次序不影响计算结果：(AB)C=A(BC)。 

� 矩阵乘法的分配率，矩阵乘法对矩阵加法是可分配的：A(B + C) = AB + AC并且(B + C)A 

= BA + CA。 

� 矩阵乘法单位元的存在性，若�	是 p × p 矩阵的单位矩阵，则对于任意 m × n 矩阵 A，

A�
=A并且��A=A。 

一般地，矩阵乘法是不可交换的，即 AB≠BA。 

如果我们有一个 n × 1 列向量 u，我们就可以把 m × n 矩阵 A 被该向量右乘看作 u 到 m

维列向量 v =Au 的变换。类似地，如果我们用一个（行）向量 u=[��, … ,��]左乘 A，我们可

以将它看作 u到 n维行向量 v = uA的变换。这样，我们可以把一个任意 m × n矩阵 A看作一

个把一个向量映射到另一个向量空间的函数。 

（14）两矩阵元素相乘 

与矩阵乘法定义不同，MADlib 的两矩阵元素相乘定义为 C=AB，A、B、C 均为 m × n

矩阵，C的元素由下式给出： �
� = �
� × �
� 
MADlib的 matrix_elem_mult函数执行两矩阵元素相乘，并输出结果矩阵。 

drop table if exists mat_r;   

select madlib.matrix_elem_mult('mat_b', 'row=row_id, val=vector',   

                                 'mat_b_sparse', 'row=row_id, col=col_id, val=val', 

                                 'mat_r', 'fmt=dense');   

select * from mat_r order by row_id;  

结果： 

row_id  |    vector      

--------+--------------- 

      1  | {81,100,4,16} 

      2  | {25,9,25,4} 

      3  | {0,1,4,9} 

      4  | {4,81,0,16} 

      5  | {9,64,49,49} 

(5 rows) 



 

45 

第 2章  数据类型

（15）求矩阵的秩 

select madlib.matrix_rank('mat_a', 'row=row_id, val=row_vec'); 

结果： 

matrix_rank  

------------- 

           4 

(1 row) 

注意，当矩阵以稀疏形式表示，并且列数大于行数时，matrix_rank函数会报错。 

dm=# select madlib.matrix_rank('mat_b_sparse_r', 'row=row_id, col=col_id, 

val=val'); 

ERROR:  plpy.SPIError: Function 

"madlib.__matrix_compose_sparse_transition(double 

precision[],integer,integer,integer,integer,double precision)": Invalid col 

id. (UDF_impl.hpp:210)  (seg20 hdp4:40000 pid=123035) (plpython.c:4663) 

CONTEXT:  Traceback (most recent call last): 

  PL/Python function "matrix_rank", line 23, in <module> 

    return matrix_ops.matrix_rank(schema_madlib, matrix_in, in_args) 

  PL/Python function "matrix_rank", line 2702, in matrix_rank 

  PL/Python function "matrix_rank", line 2672, in matrix_eval_helper 

PL/Python function "matrix_rank" 

dm=# 

矩阵的秩（rank of a matrix）常常用来刻画矩阵。设矩阵 A=(���)�×�，在 A中任取 k行 k

列交叉处元素按原相对位置组成的 k 阶行列式，称为 A 的一个 k 阶子式。m × n 矩阵 A 共有��	 ��	个 k 阶子式。若 A有 r 阶子式不为 0，任何 r+1 阶子式（如果存在的话）全为 0，则称 r

为矩阵 A的秩，记作 R(A)。 

矩阵的秩具有以下基本性质： 

� 0矩阵的秩为 0。 

� 若 R(A)=r，则 A中至少有一个 r阶子式�� ≠ 0，所有 r+1阶子式为 0，且更高阶子式均为

0，r是 A中非零子式的最高阶数。 

� 矩阵转置，秩不变。 

� 0≤R(A)≤min(m,n)。 

� 若 A是 n × n方阵，并且|A|≠0，则 R(A)=n；反之，若 R(A)=n，则|A|≠0。 

矩阵的秩（rank of a matrix）是行空间和列空间的最小维度，此维度中的向量组是线性无

关的。例如，把一个 1 × n 的行向量复制 m 次，产生一个 m × n 的矩阵，则我们只有一个秩

为 1的矩阵。 



 

46 

SQL机器学习库 MADlib技术解析 

（16）求逆矩阵 

drop table if exists mat_r;   

select madlib.matrix_inverse('mat_a', 'row=row_id, val=row_vec', 'mat_r');   

select row_vec from mat_r order by row_id;   

结果： 

                           row_vec                             

-------------------------------------------------------------- 

 {-1.2,0.900000000000001,0.333333333333334,0.600000000000001} 

 {3.20000000000001,-2.4,-1,-1.1} 

 {-5.00000000000001,3.50000000000001,1.66666666666667,2} 

 {2.2,-1.4,-0.666666666666668,-1.1} 

(4 rows) 

设 A、B 是两个矩阵，若 AB=BA=E，则称 B 是 A 的逆矩阵，而 A 则被称为可逆矩阵。

其中 E是单位矩阵。下面看一个不可逆矩阵的例子。 

create table t1 (a int, b int[]); 

insert into t1 values 

(1,'{1,2,3}'),(2,'{2,4,6}'),(3,'{3,6,9}'); 

 

select madlib.matrix_rank('t1', 'row=a, val=b'); 

select madlib.matrix_inverse('t1', 'row=a, val=b', 't2');  

select * from t2 order by a; 

3 阶矩阵 t1的秩为 1，用 matrix_inverse求 t1的逆矩阵，结果如下： 

 a |            b              

---+-------------------------- 

 1 | {NaN,NaN,NaN} 

 2 | {-Infinity,Infinity,NaN} 

 3 | {Infinity,-Infinity,NaN} 

(3 rows) 

如果求逆的矩阵不是方阵，那 matrix_inverse函数会报如下错误： 

Matrix error: Inverse operation is only defined for square matrices 

（17）求广义逆矩阵 

把逆矩阵推广到不可逆方阵（奇异矩阵）或长方矩阵上，这就是所谓的广义逆矩阵。广

义逆矩阵具有逆矩阵的部分性质，并且在方阵可逆时，它通常与逆矩阵一致。 

drop table if exists mat_r;   

select madlib.matrix_pinv('mat_a', 'row=row_id, val=row_vec', 'mat_r');   

select row_vec from mat_r order by row_id;   



 

47 

第 2章  数据类型

结果： 

                                  row_vec                                   

-------------------------------------------------------------------------- 

 {-1.20000000000001,0.900000000000004,0.333333333333335,0.600000000000003} 

 {3.20000000000002,-2.40000000000001,-1,-1.10000000000001} 

 {-5.00000000000003,3.50000000000002,1.66666666666667,2.00000000000001} 

 {2.20000000000001,-1.40000000000001,-0.66666666666667,-1.1} 

(4 rows) 

matrix_pinv 函数用于求矩阵的广义逆矩阵。还以上面的不可逆方阵为例，求它的广义逆

矩阵。 

drop table if exists t1,t2;  

create table t1 (a int, b int[]); 

insert into t1 values 

(1,'{1,2,3}'),(2,'{2,4,6}'),(3,'{3,6,9}'); 

select madlib.matrix_pinv('t1', 'row=a, val=b', 't2');  

select * from t2 order by a; 

结果： 

 a |                              b                               

---+------------------------------------------------------------- 

 1 | {0.00510204081632653,0.0102040816326531,0.0153061224489796} 

 2 | {0.0102040816326531,0.0204081632653061,0.0306122448979592} 

 3 | {0.0153061224489796,0.0306122448979592,0.0459183673469388} 

(3 rows) 

再看一个长方矩阵的例子。 

drop table if exists mat_r;   

select madlib.matrix_ndims('mat_b', 'row=row_id, val=vector'), 

       madlib.matrix_pinv('mat_b', 'row=row_id, val=vector', 'mat_r');   

select * from mat_r order by row_id;   

mat_b是一个 5 ×4 矩阵，它的广义逆矩阵如下： 

row_id  |                                         vector                       

--------+-------------------------------------------------------------------- 

      1  | {0.169405974490348,-0.000368687326811998,0.153584606426279, 

            -0.123375654346853,-0.0920196750284563} 

      2  | {-0.0977762692158761,0.0690615737096675, 

            -0.292887943436732,0.173906300749372,0.0622886509652684} 

      3  | {-0.145985550968097,0.18130052991488, 

            -0.238906461684316,0.0186947883412873,0.123325910818632} 



 

48 

SQL机器学习库 MADlib技术解析 

      4  | {0.167425011631207,-0.222818819439771,0.534239640910248, 

            -0.134386530622994,-0.0413193154120082} 

(4 rows) 

（18）提取矩阵的特征值 

drop table if exists mat_r;   

select madlib.matrix_eigen('mat_a', 'row=row_id, val=row_vec', 'mat_r');   

select * from mat_r order by row_id;   

结果： 

row_id |      eigen_values       

--------+------------------------ 

      1 | (22.2561699851212,0) 

      2 | (-0.325748023524478,0) 

      3 | (2.91179834025418,0) 

      4 | (-2.8422203018509,0) 

(4 rows) 

（19）求矩阵范数 

matrix_norm 函数用于求矩阵范数，支持的类型值有‘fro’‘one’‘inf’‘max’

‘spec’，分别代表 frobenius 范数、1 范数、infinity 范数、max 范数和 spectral 范数。默认

为 frobenius 范数。 

select madlib.matrix_norm('mat_b_sparse', 'row=row_id, col=col_id, val=val'); 

结果： 

  matrix_norm   

--------------- 

 23.4520787991 

(1 row) 

F- 范数的公式为： ‖�‖� = (∑ ∑ |�
�|��
���

�
��� )

�

�。依据公式可知下面查询的结果与

matrix_norm函数的返回值相等。 

select sqrt(sum(power(val,2))) from mat_b_sparse; 

（20）求矩阵核范数 

select madlib.matrix_nuclear_norm('mat_a', 'row=row_id, val=row_vec'); 

结果： 

matrix_nuclear_norm  

--------------------- 

        34.322635238 

(1 row) 



 

49 

第 2章  数据类型

矩阵的核范数是指矩阵奇异值的和，关于矩阵奇异值，在讨论 MADlib 的矩阵分解函数

时再进行详细说明。 

2.3  小结 

本章介绍了 MADlib 的基本数据类型，向量与矩阵。在 MADlib 中，向量和矩阵分别用

数据库中的一维数组和二维数组数据类型存储。MADlib 提供了丰富的向量和矩阵操作函数，

这里对大部分函数给出了例子说明。这些函数虽然简单，但是作为 MADlib 的基础模块非常

重要。数据分析的对象通常被抽象为向量或矩阵，而许多机器学习的复杂算法内部也是对向

量或矩阵进行计算。 

 


